Discontinuous Galerkin method for a distributed optimal control problem of time fractional diffusion equation

来源: 哈尔滨工业大学深圳研究生院 更新时间: 2020年12月01日

主 讲 人:谢小平
讲座地点:H 栋 413 室


时间:2020 年12 月3 日16:00–17:00

地点: H 栋 413 室


This talk is devoted to the numerical analysis of a control constrained distributed optimal control problem subject to a time fractional diffusion equation with non-smooth initial data. The solutions of the state and co-state are decomposed into singular and regular parts, and some growth estimates are obtained for the singular parts. Following the variational discretization concept, a full discretization is applied to the state and co-state equations by using conforming linear finite element method in space and piecewise constant discontinuous Galerkin method in time. Error estimates are derived by employing the growth estimates. In particular, graded temporal grids are adopted to obtain the first-order temporal accuracy. Finally, numerical experiments are provided to verify the theoretical results.


谢小平,四川大学数学学院教授,主要研究领域为偏微分方程数值解与有限元方法。四川省学术和技术带头人,教育部新世纪优秀人才,德国洪堡学者。中国工业与应用数学学会油水资源数值方法专业委员会副主任委员,中国工业与应用数学学会高性能计算与数学软件专业委员会委员,中国仿真学会集成微系统建模与仿真专业委员会委员。 期刊《Numerical Analysis and Applicable Mathematics》、《计算数学》和《高等学校计算数学学报》编委。